Treatment planning validation for symmetric and asymmetric motorized wedged fields
نویسنده
چکیده
Purpose: Wedged beam are often used in clinical radiotherapy to compensate missing tissues and dose gradients. The Elekta Precise linear accelerator supports an internal motorized wedge, which is a single large, physical wedge on a motorized carriage. In this study, the dosimetric performance of Elekta precise three dimensional treatment planning system (3DTPS) is evaluated by comparing the calculated and measured doses. Methods: The calculations were performed by the 3DTPS for symmetric as well as asymmetric fields in a source to skin distance (SSD) setup at the depth of maximum dose (dmax) as well as at 5, 10, and 20 cm depths in water phantom using 60° motorized wedges for field sizes of 4 × 4, 10 × 10, and 20 × 20 cm2 for 6 and 15 MV photon beams. Measurements were produced by Elekta Precise linear accelerator using 0.125 cc volume ionization chamber. Results: Good agreement between the measured and calculated isodose lines were found, with the maximum difference not exceed 5%. The difference between the calculated and measured data increases as the field size decreases, and the deviation in symmetric setting was less than that of asymmetric setting. The increase in wedge angle led to increase in the difference between calculated and measured data. Conclusion: The results from this study showed that the accuracy of Elekta Precise 3DTPS used with the motorized wedges for symmetric and asymmetric fields is adequate for the clinical applications under the studied experimental conditions.
منابع مشابه
Quantification the dosimetric parameters of asymmetric physical wedged-6MV photon beam
Introduction: Physical wedge as a useful tool has been utilized in radiotherapy to modify photon beam shape and intensity such that it distributes dose uniformly in tumor site and reduces hot points. Since during Linac commissioning dosimetric parameters like output factors and lateral dose profiles are measured only for symmetric open and wedged fields, so calculation the par...
متن کاملCharacterization of Wedge Factors and Dose Distributions in Radiotherapy with Symmetric and Asymmetric Physical Wedged Beams of 6 MV Photon Beam
Introduction: Physical wedge by modify photon beam shape and intensity has been utilized in radiotherapy to obtain uniformly dose distribution in tumor site with reduced hot spots. Calculation of dosimetric parameters for both symmetric and asymmetric wedged fields is proved necessary during linear accelerator (Linac) commissioning. The present study aimed to achieve o...
متن کاملDosimetric evaluation of a treatment planning system using pencil beam convolution algorithm for enhanced dynamic wedges with symmetric and asymmetric fields
Background: The dosimetric performance of Eclipse 6.5 three dimensional treatment planning system (3DTPS) is evaluated by comparing the calculated and measured dose in two dimensions following the guide lines of American Association for Physicists in Medicine Task Group 53. Materials and Methods: The calculations were performed by the 3DTPS for symmetric as well as asymmetric fields for standar...
متن کاملAccuracy Evaluation of Isogray TPS Dose Calculations in Symmetric and Asymmetric Fields of the Elekta Compact Linear Accelerator
Introduction: Radiation therapy is one of the most important methods of cancer treatment. Radiation therapy uses symmetric and asymmetric fields in which the radiation dose distribution is different. To calculate the dose distribution, computer treatment planning systems are used which must have acceptable calculations accuracy. The aim of this study was to investigate the accuracy of the dose ...
متن کاملEnhanced dynamic wedge factors at off‐axis points in asymmetric fields
Several recent reports have described methods for calculating enhanced dynamic wedge factors (EDWFs). Many of these reports use the monitor-unit (MU) fraction method to predict EDWFs as a function of field size. Although simple in approach, MU fraction methods do not produce accurate EDWFs in large or asymmetric fields. A recently described technique, based on the MU fraction method works well ...
متن کامل